1) Identify the function type of f(x)=x3−4x2+7 a) Exponential b) Trigonometric c) Polynomial (cubic) d) Rational 2) Find the magnitude of the vector ⟨-6, 8⟩. a) √52 b) 14 c) 6 d) 10 3) For h(t) = -16t2 + 64t + 5, when does maximum height occur? a) t = 1 b) t = 2 c) t = 4 d) t = 8 4) Solve 2x = 16. a) 2 b) 4 c) 8 d) log 16 5) Convert (r, θ) = (5, π/3) to Cartesian coordinates. a) (5√3/2, 5/2) b) (5, π/3) c) (5/2, 5√3/2) d) (5√3, 5) 6) Write 4(cos π/6 + i sin π/6) in rectangular form. a) 2 + 2√3i b) 2√3 + 2i c) 4 + i d) √3 + i 7) What is sin(π/3)? a) 1 b) √3 c) √3/2 d) 1/2 8) Solve ln(x - 3) = 2. a) x = 5 b) x = 2e - 3 c) x = ln 5 d) x = e^2 + 3 9) Solve log₃x + log₃(x - 2) = 2. a) 6 b) 2 c) 9 d) 4 10) Solve e2x = 7. a) ln 14 b) ½ ln 7 c) ln 7 d) 3.5 11) Multiply (3 - 2i)(-7 - 5i). a) -31 + i b) -21 - 10i c) -31 - i d) 31 + i 12) Solve 2cos x = 1 for 0 ≤ x < 2π. a) π/6, 11π/6 b) 2π/3, 4π/3 c) π/3 only d) π/3, 5π/3 13) Convert 3 + 3i to polar form. a) 6(cos π/3 + i sin π/3) b) 3(cos π/6 + i sin π/6) c) √18(cos π/2 + i sin π/2) d) 3√2(cos π/4 + i sin π/4) 14) Solve the system: y = 2x + 1 and y = -x + 7 a) (1, 3) b) (2, 5) c) (3, 7) d) (-2, -3) 15) Given P(t) = 1200(1.03)t, find P(5). a) 1200 b) 1500 c) 1350 d) 1391 16) How many solutions does the system 3x - 2y = 6 and 6x - 4y = 12 have? a) No solution b) Exactly one solution c) Exactly two solutions d) Infinitely many solutions 17) What is the vertex of f(x) = |x + 2| - 3? a) (2, -3) b) (-3, -2) c) (-2, -3) d) (0, -3) 18) How is y=−2(x−3)2+1 transformed from y=x2? a) Shifted left 3 and up 1 b) Reflected over y-axis c) Reflected over x-axis, stretched by 2, right 3, up 1 d) Vertical stretch by 3 19) Which equation has a horizontal asymptote at y = 0? a) y = x - 3 b) y = ln x c) y = (1/2)^x d) y = x^2 20) Evaluate arcsin(sin(3π/7)). a) π - 3π/7 b) -3π/7 c) 3π/7 d) π/7 21) Convert the point (-3, 3√3) to polar form. a) (3, π/3) b) (6, π/6) c) (√12, π/4) d) (6, 2π/3) 22) What is the end behavior of f(x) = x3 - 4x2 + 7? a) As x→∞, f(x)→-∞ b) Both ends go down c) As x→∞, f(x)→∞ d) Both ends go up 23) Solve sin x = √3/2 for 0 ≤ x < 2π. a) π/6, 5π/6 b) 2π/3 only c) π/3, 2π/3 d) π/4, 3π/4 24) What is the amplitude of y = 3sin(x - π/4)? a) 2π b) 1 c) π/4 d) 3 25) Which equation represents a parabola opening downward with vertex at (0, 4)? a) y = x2 + 4 b) y = -4x2 c) y = x2 - 4 d) y = -x2 + 4
0%
Fun Math Game!
Jaga
Jaga
Jaga
looja
Oheckbert
Math
Redigeeri sisu
Prindi
Manusta
Veel
Ülesandeid
Edetabel
Näita rohkem
Näita vähem
See edetabel on praegu privaatne. Selle avalikustamiseks klõpsake käsul
Jaga
.
Materjali omanik on selle edetabeli keelanud.
See edetabel on keelatud, kuna teie valikud erinevad materjali omaniku omadest.
Taasta valikud
Viktoriin
on avatud mall. Sellega ei saa edetabeli punkte.
Sisselogimine on nõutud
Visuaalne stiil
Fondid
Vajalik tellimus
Valikud
Vaheta malli
Näita kõike
Tegevust mängides kuvatakse rohkem vorminguid.
Avatud tulemused
Kopeeri link
QR-kood
Kustuta
Kas taastada automaatselt salvestatud
?