Истина: Прямая и плоскость называются параллельными, если они не имеют общих точек, Если прямая, не лежащая в плоскости, параллельная какой-либо прямой плоскости, то она параллельна этой плоскости, Линия пересечения плоскостей, одна из которых проходит через прямую, параллельную другой плоскости, параллельна этой прямой, MN∥AC, MN∥β, Если AD⊂β, то BC∥β, Ложь: Прямая и плоскость могут быть пересекающимися, параллельными и скрещивающимися, Если прямая, не лежащая в плоскости, параллельная каждой прямой плоскости, то она параллельна этой плоскости, Линия пересечения плоскостей, одна из которых проходит через прямую, перпендикулярную другой плоскости, параллельна этой прямой, MN∩β, BC=AD, поэтому BC∥β,
0%
Параллельность прямой и плоскости_тест
Jaga
Jaga
Jaga
looja
4xanna
10 класс
Математика
Redigeeri sisu
Prindi
Manusta
Veel
Ülesandeid
Edetabel
Näita rohkem
Näita vähem
See edetabel on praegu privaatne. Selle avalikustamiseks klõpsake käsul
Jaga
.
Materjali omanik on selle edetabeli keelanud.
See edetabel on keelatud, kuna teie valikud erinevad materjali omaniku omadest.
Taasta valikud
Õige või vale
on avatud mall. Sellega ei saa edetabeli punkte.
Sisselogimine on nõutud
Visuaalne stiil
Fondid
Vajalik tellimus
Valikud
Vaheta malli
Näita kõike
Tegevust mängides kuvatakse rohkem vorminguid.
Avatud tulemused
Kopeeri link
QR-kood
Kustuta
Kas taastada automaatselt salvestatud
?