Истина: Прямая и плоскость называются параллельными, если они не имеют общих точек, Если прямая, не лежащая в плоскости, параллельная какой-либо прямой плоскости, то она параллельна этой плоскости, Линия пересечения плоскостей, одна из которых проходит через прямую, параллельную другой плоскости, параллельна этой прямой, MN∥AC, MN∥β, Если AD⊂β, то BC∥β, Ложь: Прямая и плоскость могут быть пересекающимися, параллельными и скрещивающимися, Если прямая, не лежащая в плоскости, параллельная каждой прямой плоскости, то она параллельна этой плоскости, Линия пересечения плоскостей, одна из которых проходит через прямую, перпендикулярную другой плоскости, параллельна этой прямой, MN∩β, BC=AD, поэтому BC∥β,
0%
Параллельность прямой и плоскости_тест
શેર કરો
શેર કરો
શેર કરો
4xanna
દ્વારા
10 класс
Математика
સામગ્રીમાં ફેરફાર કરો
પ્રિન્ટ
એમ્બેડ
વધુ
સોંપણીઓ
લીડરબોર્ડ
વધુ બતાવો
ઓછું બતાવો
આ લીડરબોર્ડ હાલમાં ખાનગી છે. તેને સાર્વજનિક કરવા માટે
શેર
પર ક્લિક કરો.
આ લીડરબોર્ડને સ્ત્રોત નિર્માતા દ્વારા નિષ્ક્રિય કરવામાં આવ્યું છે.
આ લીડરબોર્ડ નિષ્ક્રિય છે કારણ કે તમારા વિકલ્પો સ્ત્રોત નિર્માતા કરતા અલગ છે.
વિકલ્પો પાછા લાવો
સાચું અથવા ખોટું
એ ઓપન-એન્ડેડ ટેમ્પલેટ છે. તે લીડરબોર્ડ માટે સ્કોર જનરેટ કરતું નથી.
લોગ-ઇન જરૂરી છે
દૃશ્યમાન શૈલી
ફોન્ટ્સ
સબસ્ક્રિપ્શન જરૂરી
વિકલ્પો
ટેમ્પલેટ બદલો
બધું બતાવો
પ્રવૃત્તિ રમત દરમ્યાન વધુ ફોરમેટ દેખાશે.
પરિણામો ખોલો
કડીની નકલ કરો
ક્યુઆર કોડ
કાઢી નાંખો
આપોઆપ સંગ્રહ થયેલ છે:
?