When adding a value to both sides of an inequality the inequality statement remains true. If a < c, then (a + b) < (c + b). This property is ____. When subtracting a value to both sides of an inequality the inequality statement remains true. If a < c, then (a - b) < (c - b). This property is ____. When multiplying a value to both sides of an inequality that is greater than zero, the inequality statement remains true. If a < c, then ab < cb if b > 0. When multiplying a value to both sides of an inequality that is less than zero (or negative), the inequality sign flips so that the inequality statement remains true. If a < c, then ab > cb if b < 0. This property is ____. When dividing a value from both sides of an inequality that is greater than zero, the inequality statement remains true. If a < c, then a/b < c/b if b > 0. When dividing a value from both sides of an inequality that is less than zero (or negative), the inequality sign flips so that the inequality statement remains true. If a < c, then a/b > c/b if b < 0. This property is ____.
0%
Module 3 Lesson 2
공유
공유
공유
만든이
Anniecox
G9
Math
Math 1
콘텐츠 편집
인쇄
퍼가기
더보기
할당
순위표
더 보기
접기
이 순위표는 현재 비공개입니다.
공유
를 클릭하여 공개할 수 있습니다.
자료 소유자가 이 순위표를 비활성화했습니다.
옵션이 자료 소유자와 다르기 때문에 이 순위표가 비활성화됩니다.
옵션 되돌리기
문장 완성
(은)는 개방형 템플릿입니다. 순위표에 올라가는 점수를 산출하지 않습니다.
로그인이 필요합니다
비주얼 스타일
글꼴
구독 필요
옵션
템플릿 전환하기
모두 표시
액티비티를 플레이할 때 더 많은 포맷이 나타납니다.
결과 열기
링크 복사
QR 코드
삭제
자동 저장된
게임을 복구할까요?