Sample - A subset of the population or community that you choose to study that will help you understand the population or community as a whole, Random sampling - is a probability sample that includes respondents selected from a list of the entire population of interest so that each respondent has an equal chance of being selected., Sampling bias - occurs when some members of the population are more or less likely to be selected for participation in your data gathering efforts than others, Generalization - is possible when data gathered from a sample accurately represent the general population from which the sample was drawn., Convenience sampling bias - occurs when data are collected from respondents who are easy to reach, or who are easy to work with. , Population - A set of similar people, items or events that is of interest for some question or experiment., Sampling unit - The individual person, category of people, or object from whom/which the measurement (observation) is taken, Sample frame - A specific list of units (men, women, households, individuals, children, adolescents, etc.) that you will use to generate your sample. Examples could be a census list or a list of employed teachers, a registration log or a list of project participants, Stratified sample - A type of sampling method in which the population is divided into separate subgroups, called strata. Then, a probability sample is drawn from each subgroup, which allows for the statistical comparison of results within the sample., Margin of error - expresses the maximum expected difference between the true population and the sample estimate, Confidence level - refers to the percentage of all possible samples that can be expected to include the true population parameter., Purposive sampling - primarily used when you want to collect qualitative data, it is a non-probability sample where sampling units that are investigated are based on the judgement of the researcher, Anonymization - Stripping data of any identifiable information, making it impossible to derive insights on a discrete individual, even by the party that is responsible for the data analysis. , Pseudonymization - Replacing personally identifiable information fields with a code that protects a respondent’s identity,
0%
Samples Activity
Kopīgot
Kopīgot
Kopīgot
autors:
Nazarnet2000
Rediģēt saturu
Drukāt
Iegult
Vairāk
Uzdevumus
Līderu saraksts
Rādīt vairāk
Rādīt mazāk
Šī līderu grupa pašlaik ir privāta. Noklikšķiniet uz
Kopīgot
, lai to publiskotu.
Mācību līdzekļa īpašnieks ir atspējojis šo līderu grupu.
Šī līderu grupa ir atspējota, jo jūsu izmantotās iespējas atšķiras no mācību līdzekļa īpašnieka iespējām.
Atjaunot sākotnējās iespējas
Saderību meklēšana
ir atvērta veidne. Tā neģenerē rezultātus līderu grupai.
Nepieciešams pieteikties
Vizuālais stils
Fonts
Nepieciešams abonements
Iespējas
Pārslēgt veidni
Rādīt visus
Atskaņojot aktivitāti, tiks parādīti vairāki formāti.
Atvērtie rezultāti
Kopēt saiti
QR kods
Dzēst
Atjaunot automātiski saglabāto:
?