Model - The representation of patterns learned from data in supervised learning., Training - The process of teaching a machine learning model using labeled data., Labels - The known outputs or categories assigned to the input data used for training., Features - The measurable properties or characteristics used to predict the target variable., Accuracy - A metric measuring the correctness of predictions made by a model., Classification - A type of supervised learning where the goal is to categorize input into classes or categories., Regression - Another type of supervised learning focused on predicting continuous numerical values., Overfitting - When a model learns too much from the training data and performs poorly on new, unseen data., Underfitting - Occurs when a model is too simple to capture the patterns in the training data., Validation - The process of assessing a model's performance on data not used during training.,
0%
Supervised Learning
共享
共享
共享
由
Oumayma8
编辑内容
打印
嵌入
更多
作业
排行榜
显示更多
显示更少
此排行榜当前是私人享有。单击
,共享
使其公开。
资源所有者已禁用此排行榜。
此排行榜被禁用,因为您的选择与资源所有者不同。
还原选项
匹配游戏
是一个开放式模板。它不会为排行榜生成分数。
需要登录
视觉风格
字体
需要订阅
选项
切换模板
显示所有
播放活动时将显示更多格式。
打开成绩
复制链接
QR 代码
删除
恢复自动保存:
?