1) If n (AxB ) = 6 and A = { ,1 3} then n (B) is a) 1 b) 2 c) 3 d) 6 2) A = {a, b, p}, B = {2, 3}, C = {p, q, r, s} then n[(A ∪ C) × B] isy a) 8 b) 20 c) 12 d) 16 3) If A = {1,2}, B = {1,2, 3, 4}, C = {5,6} and D = {5, 6, 7, 8} then state which of the following statement is true ………………. a) (A × C) ⊂ (B × D) b) (B × D) ⊂ (A × C) c) (A × B) ⊂ (A × D) d) (D × A) ⊂ (B × A) 4) If there are 1024 relations from a set A = {1, 2, 3, 4, 5} to a set B, then the number of elements in B is a) 3 b) 2 c) 4 d) 6 5) The range of the relation R = {(x, x2) a prime number less than 13} is …………………… a) {2, 3, 5, 7} b) {2, 3, 5, 7, 11} c) {4, 9, 25, 49, 121} d) {1, 4, 9, 25, 49, 121} 6) If the ordered pairs (a + 2, 4) and (5, 2a + b)are equal then (a, b) is a) (2, -2) b) (5, 1) c) (2, 3) d) (3, -2) 7) Let n(A) = m and n(B) = n then the total number of non-empty relations that can be defined from A to B is …………….. a) mn b) nm c) 2mn -1 d) 2mn 8) If {(a, 8),(6, b)}represents an identity function, then the value of a and b are respectively a) (8, 6) b) (8, 8) c) (6, 8) d) (6, 6) 9) Let A = {1, 2, 3, 4} and B = {4, 8, 9, 10}. A function f: A → B given by f = {(1, 4), (2, 8),(3,9),(4,10)} is a …… a) Many-one function b) Identity function c) One-to-one function d) Into function 10) If f (x) = 2x2 and g(x) = 1/3x, then fog is ………….. a) 3/2x2 b) 2/3x2 c) 2/9x2 d) 1/6x2 11) If f: A → B is a bijective function and if n(B) = 7, then n(A) is equal to a) 7 b) 49 c) 1 d) 14 12) Let f and g be two functions given by, f = {(0,1),(2, 0),(3-4),(4,2),(5,7)} g = {(0,2),(1,0),(2, 4),(-4,2),(7,0)} then the range of f o g is ………………… a) {0,2,3,4,5} b) {-4,1,0,2,7} c) {1,2,3,4,5} d) {0,1,2} 13) Let f(x) = √1+x2 then a) f(xy) = f(x),f(y) b) f(xy) ≥ f(x),f(y) c) f(xy) ≤ f(x).f(y) d) None of these 14) If g= {(1,1),(2,3),(3,5),(4,7)} is a function given by g(x) = αx + β then the values of α and β are a) (-1,2) b) (2,-1) c) (-1,-2) d) (1,2) 15) f(x) = (x + 1)3 – (x – 1)3 represents a function which is a) linear b) cubic c) reciprocal d) quadratic
0%
Relations and Functions
Deli
Deli
Deli
ustvaril/-a
Aathiyathunai
Uredi vsebino
Natisni
Vdelaj
Več
Naloge
Lestvica vodilnih
Prikaži več
Prikaži manj
Ta lestvica je trenutno zasebna. Kliknite
Deli
, da jo objavite.
Lastnik vira je onemogočil to lestvico vodilnih.
Ta lestvica vodilnih je onemogočena, ker se vaše možnosti razlikujejo od možnosti lastnika vira.
Možnosti za vrnitev
Kviz
je odprta predloga. Ne ustvarja rezultatov za lestvico vodilnih.
Potrebna je prijava
Vizualni slog
Pisave
Zahtevana je naročnina
Možnosti
Preklopi predlogo
Pokaži vse
Med igranjem dejavnosti se bo prikazalo več oblik zapisa.
Odprti rezultati
Kopiraj povezavo
QR koda
Izbriši
Obnovi samodejno shranjeno:
?