1) Графік функції y=kf(x), де k>0, можна отримати, замінивши кожну точку графіка функції y=f(x) на точку: a) з різними абсцисою та з ординатою, помноженою на k b) з тією самою абсцисою та з ординатою, помноженою на k c) з ординатою, поділеною на k d) з абсцисою, помноженою на k 2) Всі точки графіка функції y=f(kx), де k>0, можна отримати, замінивши кожну точку графіка функції y=f(x) на точку: a) з іншою ординатою та з абсцисою, помноженою на k b) з ординатою, поділеною на k c) з абсцисою, помноженою на k d) з тією самою ординатою та з абсцисою, поділеною на k 3) Як використовуючи графік y=f(x), побудувати графік y=-f(x)? a) В результаті симетрії відносно осі абсцис b) В результаті симетрії відносно осі ординат. c) В резутьтатісиметрії відносно початку системи коордтнат. d) За допомогою паралельного перенесення. 4) Як використовуючи графік y=f(x), побудувати графік y=f(-x)? a) В результаті симетрії відносно осі абсцис b) В результаті симетрії відносно осі ординат. c) В резутьтатісиметрії відносно початку системи коордтнат. d) За допомогою паралельного перенесення. 5) Графіку функції y=kx² належить точка К(-3; 27). Знайдіть значення k. a) -9 b) 9 c) 1/3 d) 3 6) Якщо a>0, то вітки: a) гіперболи направлені вниз b) параболи направлені вниз c) гіперболи направлені вгору d) параболи направлені вгору 7) Якщо а<0, то вітки: a) гіперболи направлені вгору b) параболи направлені вгору c) параболи направлені вниз d) гіперболи направлені вниз 8) Якщо графік червоного кольору - графік функції y = √x, то графік функції зеленого кольору: a) y = 0,7√x, b) y = 2√x, c) y = 1,4√x, d) y = 4√x, 9) Якщо графік червоного кольору - графік функції y = √x, то графік функції синьогого кольору: a) y = 0,7√x, b) y = 2√x, c) y = 1,4√x, d) y = 4√x,
0%
Перетворення графіків. Графік функції y=kf(x). Графік функції y=f(kx).
Deli
Deli
Deli
ustvaril/-a
Tereshchenkozinochka
9 клас
Uredi vsebino
Natisni
Vdelaj
Več
Naloge
Lestvica vodilnih
Prikaži več
Prikaži manj
Ta lestvica je trenutno zasebna. Kliknite
Deli
, da jo objavite.
Lastnik vira je onemogočil to lestvico vodilnih.
Ta lestvica vodilnih je onemogočena, ker se vaše možnosti razlikujejo od možnosti lastnika vira.
Možnosti za vrnitev
Kviz
je odprta predloga. Ne ustvarja rezultatov za lestvico vodilnih.
Potrebna je prijava
Vizualni slog
Pisave
Zahtevana je naročnina
Možnosti
Preklopi predlogo
Pokaži vse
Med igranjem dejavnosti se bo prikazalo več oblik zapisa.
Odprti rezultati
Kopiraj povezavo
QR koda
Izbriši
Obnovi samodejno shranjeno:
?