Model - The representation of patterns learned from data in supervised learning., Training - The process of teaching a machine learning model using labeled data., Labels - The known outputs or categories assigned to the input data used for training., Features - The measurable properties or characteristics used to predict the target variable., Accuracy - A metric measuring the correctness of predictions made by a model., Classification - A type of supervised learning where the goal is to categorize input into classes or categories., Regression - Another type of supervised learning focused on predicting continuous numerical values., Overfitting - When a model learns too much from the training data and performs poorly on new, unseen data., Underfitting - Occurs when a model is too simple to capture the patterns in the training data., Validation - The process of assessing a model's performance on data not used during training.,
0%
Supervised Learning
共用
共用
共用
由
Oumayma8
編輯內容
列印
嵌入
更多
作業
排行榜
顯示更多
顯示更少
此排行榜當前是私有的。單擊
共用
使其公開。
資源擁有者已禁用此排行榜。
此排行榜被禁用,因為您的選項與資源擁有者不同。
還原選項
匹配遊戲
是一個開放式範本。它不會為排行榜生成分數。
需要登錄
視覺風格
字體
需要訂閱
選項
切換範本
顯示所有
播放活動時將顯示更多格式。
打開結果
複製連結
QR 代碼
刪除
恢復自動保存:
?