1) Identify the function type of f(x)=x3−4x2+7 a) Exponential b) Trigonometric c) Polynomial (cubic) d) Rational 2) Find the magnitude of the vector ⟨-6, 8⟩. a) √52 b) 14 c) 6 d) 10 3) For h(t) = -16t2 + 64t + 5, when does maximum height occur? a) t = 1 b) t = 2 c) t = 4 d) t = 8 4) Solve 2x = 16. a) 2 b) 4 c) 8 d) log 16 5) Convert (r, θ) = (5, π/3) to Cartesian coordinates. a) (5√3/2, 5/2) b) (5, π/3) c) (5/2, 5√3/2) d) (5√3, 5) 6) Write 4(cos π/6 + i sin π/6) in rectangular form. a) 2 + 2√3i b) 2√3 + 2i c) 4 + i d) √3 + i 7) What is sin(π/3)? a) 1 b) √3 c) √3/2 d) 1/2 8) Solve ln(x - 3) = 2. a) x = 5 b) x = 2e - 3 c) x = ln 5 d) x = e^2 + 3 9) Solve log₃x + log₃(x - 2) = 2. a) 6 b) 2 c) 9 d) 4 10) Solve e2x = 7. a) ln 14 b) ½ ln 7 c) ln 7 d) 3.5 11) Multiply (3 - 2i)(-7 - 5i). a) -31 + i b) -21 - 10i c) -31 - i d) 31 + i 12) Solve 2cos x = 1 for 0 ≤ x < 2π. a) π/6, 11π/6 b) 2π/3, 4π/3 c) π/3 only d) π/3, 5π/3 13) Convert 3 + 3i to polar form. a) 6(cos π/3 + i sin π/3) b) 3(cos π/6 + i sin π/6) c) √18(cos π/2 + i sin π/2) d) 3√2(cos π/4 + i sin π/4) 14) Solve the system: y = 2x + 1 and y = -x + 7 a) (1, 3) b) (2, 5) c) (3, 7) d) (-2, -3) 15) Given P(t) = 1200(1.03)t, find P(5). a) 1200 b) 1500 c) 1350 d) 1391 16) How many solutions does the system 3x - 2y = 6 and 6x - 4y = 12 have? a) No solution b) Exactly one solution c) Exactly two solutions d) Infinitely many solutions 17) What is the vertex of f(x) = |x + 2| - 3? a) (2, -3) b) (-3, -2) c) (-2, -3) d) (0, -3) 18) How is y=−2(x−3)2+1 transformed from y=x2? a) Shifted left 3 and up 1 b) Reflected over y-axis c) Reflected over x-axis, stretched by 2, right 3, up 1 d) Vertical stretch by 3 19) Which equation has a horizontal asymptote at y = 0? a) y = x - 3 b) y = ln x c) y = (1/2)^x d) y = x^2 20) Evaluate arcsin(sin(3π/7)). a) π - 3π/7 b) -3π/7 c) 3π/7 d) π/7 21) Convert the point (-3, 3√3) to polar form. a) (3, π/3) b) (6, π/6) c) (√12, π/4) d) (6, 2π/3) 22) What is the end behavior of f(x) = x3 - 4x2 + 7? a) As x→∞, f(x)→-∞ b) Both ends go down c) As x→∞, f(x)→∞ d) Both ends go up 23) Solve sin x = √3/2 for 0 ≤ x < 2π. a) π/6, 5π/6 b) 2π/3 only c) π/3, 2π/3 d) π/4, 3π/4 24) What is the amplitude of y = 3sin(x - π/4)? a) 2π b) 1 c) π/4 d) 3 25) Which equation represents a parabola opening downward with vertex at (0, 4)? a) y = x2 + 4 b) y = -4x2 c) y = x2 - 4 d) y = -x2 + 4
0%
Fun Math Game!
Дял
Дял
Дял
от
Oheckbert
Math
Редактиране на съдържание
Печат
За вграждане
Повече
Задачи
Табло
Покажи още
Покажи по-малко
Това табло е в момента частна. Щракнете върху
дял
да я направи публична.
Тази класация е забранено от собственика на ресурса.
Тази класация е забранено, като опциите са различни за собственика на ресурса.
Обръщам опции
Викторина
е отворен шаблон. Тя не генерира резултати за табло.
Влезте в изисква
Визуален стил
Шрифтове
Изисква се абонамент
Опции
Шаблон за превключване
Покажи всички
Повече формати ще се появи, докато играете дейността.
Отворени резултати
Копиране на връзка
QR код
Изтриване
Възстановяване на авто-записаната:
?