Группа 1: Правда, Две прямые, перпендикулярны к третьей, не пересекаются., Треугольника со сторонами 1,2,4 не существует., Через заданную точку плоскости можно провести бесконечное количество прямых., Внешний угол треугольника равен сумме двух углов треугольника, не смежных с ним., Вертикальные углы равны., Сумма смежных углов равна 180° , Каждая из биссектрис равностороннего треугольника является его медианой., Если угол острый, то смежный с ним угол тупой., Группа 2: Ложь, Две прямые, перпендикулярные третьей прямой, перпендикулярны друг другу., Треугольника со сторонами 1,2,4 существует., Через заданную точку плоскости можно провести единственную прямую., Внешний угол треугольника равен сумме его внутренних углов., Смежные углы всегда равны., Каждая из биссектрис равнобедренного треугольника является его медианой., Если угол острый, то смежный с ним угол тоже острый.,
0%
Геометрия 7 класс
Sdílet
Sdílet
Sdílet
podle
Lotvindanil
Upravit obsah
Tisk
Vložit
Více
Přiřazení
Výsledková tabule/Žebříček
Zobrazit více
Zobrazit méně
Tento žebříček je v současné době soukromý. Klikněte na
Share
chcete-li jej zveřejnit.
Tuto výsledkovou tabuli vypnul majitel zdroje.
Tento žebříček je zakázán, protože vaše možnosti jsou jiné než možnosti vlastníka zdroje.
Možnosti vrácení
Třídění skupin
je otevřená šablona. Negeneruje skóre pro žebříček.
Vyžaduje se přihlášení.
Vizuální styl
Fonty
Je vyžadováno předplatné
Možnosti
Přepnout šablonu
Zobrazit vše
Při přehrávání aktivity se zobrazí další formáty.
Otevřené výsledky
Kopírovat odkaz
QR kód
Odstranit
Obnovit automatické uložení:
?