1) Što je točno? a) Funkcija 𝑓:ℝ→[−1,1], 𝑓(𝑡)=𝐬𝐢𝐧𝒕 je neparna funkcija. b) Funkcija 𝑓: ℝ∖{𝜋/2+𝑘𝜋:𝑘∈ℤ}→ ℝ , 𝑓(𝑡)=𝐜𝐭𝐠𝒕 je parna funkcija. c) Funkcija 𝑓: ℝ→[−1,1], 𝑓(𝑡)=𝐜𝐨𝐬𝒕 je neparna funkcija. d) Funkcija 𝑓:ℝ∖{𝜋/2+𝑘𝜋:𝑘∈ℤ}→ ℝ , 𝑓(𝑡)=𝐭𝐠𝒕 je neparna funkcija. 2) Za funkcije sinus i kosinus vrijedi: a) Njihove grafove nazivamo sinusoide. b) Nisu periodične. c) Periodične su s temeljnim periodom 𝜋. 3) Funkcije tangens i kotangens periodične su s temeljnim periodom 𝜋. a) Točno. b) Netočno. 4) Temeljni period funkcija 𝑓,g:ℝ→ℝ , 𝑓(𝑥)=tg(𝜔𝑥+𝜑) i 𝑔(𝑥)=ctg(𝜔𝑥+𝜑), 𝜑,𝜔>0 jednak je: a) 𝝅/𝝎 b) 𝝎 c) 𝝅/𝜑 5) Za funkcije zadane pravilom 𝑓(𝑥)=sin𝑎𝑥, odnosno 𝑔(𝑥)=cos𝑎𝑥, za svaki 𝑎>0 vrijedi: a) Nisu periodične. b) Periodične su. c) Grafovi funkcija simetrični su s obzirom na x-os. d) Njihov temeljni period jednak je 2𝜋/𝑎. 6) Što određuje parametar a u grafičkom prikazu funkcije dane pravilom 𝒇(𝒙)=𝒂𝐜𝐨𝐬(𝒃𝒙+𝒄), odnosno 𝒇(𝒙)=𝒂𝐬𝐢𝐧(𝒃𝒙+𝒄), 𝒂,𝒃,𝒄∈ℝ? a) Period funkcije. b) Amplitudu funkcije. c) Translaciju grafa po x-osi. 7) Što određuje parametar b u grafičkom prikazu funkcije dane pravilom 𝒇(𝒙)=𝒂𝐜𝐨𝐬(𝒃𝒙+𝒄), odnosno 𝒇(𝒙)=𝒂𝐬𝐢𝐧(𝒃𝒙+𝒄), 𝒂,𝒃,𝒄∈ℝ? a) Period funkcije. b) Amplitudu funkcije. c) Translaciju grafa po x-osi. 8) Što određuje parametar c u grafičkom prikazu funkcije dane pravilom 𝒇(𝒙)=𝒂𝐜𝐨𝐬(𝒃𝒙+𝒄), odnosno 𝒇(𝒙)=𝒂𝐬𝐢𝐧(𝒃𝒙+𝒄), 𝒂,𝒃,𝒄∈ℝ? a) Period funkcije. b) Amplitudu funkcije. c) Translaciju grafa po x-osi. 9) Što vrijedi za funkcije zadane pravilom 𝒇(𝒙)=𝒂𝐜𝐨𝐬𝒙, 𝒂∈ℝ? a) Za a>1, imaju veću amplitudu od funkcije dane pravilom 𝑓(𝑥)=cos𝑥. b) Za 0<a<1, imaju veću amplitudu od funkcije dane pravilom 𝑓(𝑥)=cos𝑥. c) Sve funkcije imaju nultočke 𝑥=𝜋/2+𝑘𝜋, 𝑘∈ℤ. 10) Za grafove funkcija zadane pravilom 𝒇(𝒙)=𝒂𝐜𝐨𝐬𝒙, odnosno 𝒇(𝒙)=−𝒂𝐜𝐨𝐬𝒙, 𝑎∈ℝ, vrijedi: a) Simetrični su s obzirom na y-os. b) Nisu simetrični niti s obzirom na x-os niti s obzirom na y-os. c) Simetrični su s obzirom na x-os. 11) Što vrijedi za funkciju zadanu pravilom 𝒇(𝒙)=𝐜𝐨𝐬(𝒙+𝒄), 𝒄∈ℝ? a) Ako mijenjamo koeficijent c funkcije imaju jednaki period 2𝜋. b) Ako mijenjamo koeficijent c i amplituda funkcija se mijenja. c) Ako je 𝑐>0 dolazi do translacije grafa funkcije za c udesno duž 𝑥−osi. d) Ako je 𝑐<0 dolazi do translacije grafa funkcije za c udesno duž 𝑥−osi. 12) Graf funkcije kosinus je isti kao i graf funkcije sinus, ali je translatiran u lijevu stranu duž osi apscisa za: a) 2𝜋 b) 𝜋 c) 𝜋/2 13) Što vrijedi za funkcije zadane pravilom 𝒇(𝒙)=𝒂𝐬𝐢𝐧𝒙, 𝒂∈ℝ? a) Za a>1, imaju manju amplitudu od funkcije dane pravilom 𝑓(𝑥)=sin𝑥. b) Za 0<a<1, imaju manju amplitudu od funkcije dane pravilom 𝑓(𝑥)=sin𝑥. c) Sve funkcije imaju nultočke 𝑥=𝑘𝜋, 𝑘∈ℤ. 14) Za grafove funkcija zadane pravilom 𝒇(𝒙)=𝒂𝐬𝐢𝐧𝒙, odnosno 𝒇(𝒙)=−𝒂𝐬𝐢𝐧𝒙, 𝑎∈ℝ, vrijedi: a) Simetrični su s obzirom na y-os. b) Nisu simetrični niti s obzirom na x-os niti s obzirom na y-os. c) Simetrični su s obzirom na x-os. 15) Kako koeficijent c utječe na izgled grafa funkcije zadane pravilom 𝒇(𝒙)=𝐬𝐢𝐧(𝒙+𝒄), 𝒄∈ℝ, 𝒄>0? a) Dolazi do translacije grafa za c ulijevo duž 𝑥−osi. b) Dolazi do translacije grafa za c udesno duž 𝑥−osi. c) Dolazi do translacije grafa za c ulijevo duž y−osi. 16) Kako koeficijent c utječe na izgled grafa funkcije zadane pravilom 𝒇(𝒙)=𝐬𝐢𝐧(𝒙+𝒄), 𝒄∈ℝ, 𝒄<0? a) Dolazi do translacije grafa za c ulijevo duž 𝑥−osi. b) Dolazi do translacije grafa za c udesno duž 𝑥−osi. c) Dolazi do translacije grafa za c ulijevo duž y−osi.
0%
Trigonometrijske funkcije
Sdílet
Sdílet
podle
Petarbacic99
3. Razred Srednje Škole
Gimnazija
Matematika
Zobrazit více
Upravit obsah
Vložit
Jako
Více
Výsledková tabule/Žebříček
Zobrazit více
Zobrazit méně
Tento žebříček je v současné době soukromý. Klikněte na
Share
chcete-li jej zveřejnit.
Tuto výsledkovou tabuli vypnul majitel zdroje.
Tento žebříček je zakázán, protože vaše možnosti jsou jiné než možnosti vlastníka zdroje.
Možnosti vrácení
Kvíz
je otevřená šablona. Negeneruje skóre pro žebříček.
Vyžaduje se přihlášení.
Téma
Fonty
Vyžaduje se přihlášení.
Možnosti
Přepnout šablonu
Interaktivní prvky
Zobrazit vše
Při přehrávání aktivity se zobrazí další formáty.
Obnovit automatické uložení:
?