1) Identify the function type of f(x)=x3−4x2+7 a) Exponential b) Trigonometric c) Polynomial (cubic) d) Rational 2) Find the magnitude of the vector ⟨-6, 8⟩. a) √52 b) 14 c) 6 d) 10 3) For h(t) = -16t2 + 64t + 5, when does maximum height occur? a) t = 1 b) t = 2 c) t = 4 d) t = 8 4) Solve 2x = 16. a) 2 b) 4 c) 8 d) log 16 5) Convert (r, θ) = (5, π/3) to Cartesian coordinates. a) (5√3/2, 5/2) b) (5, π/3) c) (5/2, 5√3/2) d) (5√3, 5) 6) Write 4(cos π/6 + i sin π/6) in rectangular form. a) 2 + 2√3i b) 2√3 + 2i c) 4 + i d) √3 + i 7) What is sin(π/3)? a) 1 b) √3 c) √3/2 d) 1/2 8) Solve ln(x - 3) = 2. a) x = 5 b) x = 2e - 3 c) x = ln 5 d) x = e^2 + 3 9) Solve log₃x + log₃(x - 2) = 2. a) 6 b) 2 c) 9 d) 4 10) Solve e2x = 7. a) ln 14 b) ½ ln 7 c) ln 7 d) 3.5 11) Multiply (3 - 2i)(-7 - 5i). a) -31 + i b) -21 - 10i c) -31 - i d) 31 + i 12) Solve 2cos x = 1 for 0 ≤ x < 2π. a) π/6, 11π/6 b) 2π/3, 4π/3 c) π/3 only d) π/3, 5π/3 13) Convert 3 + 3i to polar form. a) 6(cos π/3 + i sin π/3) b) 3(cos π/6 + i sin π/6) c) √18(cos π/2 + i sin π/2) d) 3√2(cos π/4 + i sin π/4) 14) Solve the system: y = 2x + 1 and y = -x + 7 a) (1, 3) b) (2, 5) c) (3, 7) d) (-2, -3) 15) Given P(t) = 1200(1.03)t, find P(5). a) 1200 b) 1500 c) 1350 d) 1391 16) How many solutions does the system 3x - 2y = 6 and 6x - 4y = 12 have? a) No solution b) Exactly one solution c) Exactly two solutions d) Infinitely many solutions 17) What is the vertex of f(x) = |x + 2| - 3? a) (2, -3) b) (-3, -2) c) (-2, -3) d) (0, -3) 18) How is y=−2(x−3)2+1 transformed from y=x2? a) Shifted left 3 and up 1 b) Reflected over y-axis c) Reflected over x-axis, stretched by 2, right 3, up 1 d) Vertical stretch by 3 19) Which equation has a horizontal asymptote at y = 0? a) y = x - 3 b) y = ln x c) y = (1/2)^x d) y = x^2 20) Evaluate arcsin(sin(3π/7)). a) π - 3π/7 b) -3π/7 c) 3π/7 d) π/7 21) Convert the point (-3, 3√3) to polar form. a) (3, π/3) b) (6, π/6) c) (√12, π/4) d) (6, 2π/3) 22) What is the end behavior of f(x) = x3 - 4x2 + 7? a) As x→∞, f(x)→-∞ b) Both ends go down c) As x→∞, f(x)→∞ d) Both ends go up 23) Solve sin x = √3/2 for 0 ≤ x < 2π. a) π/6, 5π/6 b) 2π/3 only c) π/3, 2π/3 d) π/4, 3π/4 24) What is the amplitude of y = 3sin(x - π/4)? a) 2π b) 1 c) π/4 d) 3 25) Which equation represents a parabola opening downward with vertex at (0, 4)? a) y = x2 + 4 b) y = -4x2 c) y = x2 - 4 d) y = -x2 + 4
0%
Fun Math Game!
Teilen
Teilen
Teilen
von
Oheckbert
Math
Precalculus
Inhalt bearbeiten
Drucken
Einbetten
Mehr
Zuweisungen
Bestenliste
Mehr anzeigen
Weniger anzeigen
Diese Bestenliste ist derzeit privat. Klicke auf
Teilen
um sie öffentlich zu machen.
Diese Bestenliste wurde vom Eigentümer der Ressource deaktiviert.
Diese Bestenliste ist deaktiviert, da sich Ihre Einstellungen von denen des Eigentümer der Ressource unterscheiden.
Einstellungen zurücksetzen
Quiz
ist eine Vorlage mit offenem Ende. Es generiert keine Punkte für eine Bestenliste.
Anmelden erforderlich
Visueller Stil
Schriftarten
Abonnement erforderlich
Einstellungen
Vorlage ändern
Alle anzeigen
Weitere Formate werden angezeigt, wenn du die Aktivität spielst.
Offene Ergebnisse
Link kopieren
QR-Code
Löschen
Soll die automatisch gespeicherte Aktivität
wiederhergestellt werden?