Истина: Прямая и плоскость называются параллельными, если они не имеют общих точек, Если прямая, не лежащая в плоскости, параллельная какой-либо прямой плоскости, то она параллельна этой плоскости, Линия пересечения плоскостей, одна из которых проходит через прямую, параллельную другой плоскости, параллельна этой прямой, MN∥AC, MN∥β, Если AD⊂β, то BC∥β, Ложь: Прямая и плоскость могут быть пересекающимися, параллельными и скрещивающимися, Если прямая, не лежащая в плоскости, параллельная каждой прямой плоскости, то она параллельна этой плоскости, Линия пересечения плоскостей, одна из которых проходит через прямую, перпендикулярную другой плоскости, параллельна этой прямой, MN∩β, BC=AD, поэтому BC∥β,
0%
Параллельность прямой и плоскости_тест
Compartir
Compartir
Compartir
por
4xanna
10 класс
Математика
Editar contenido...
Imprimir
Incrustar
Más
Tareas
Tabla de clasificación
Mostrar más
Mostrar menos
Esta tabla de clasificación es actualmente privada. Haz clic en
Compartir
para hacerla pública.
Esta tabla de clasificación ha sido desactivada por el propietario del recurso.
Esta tabla clasificación está desactivada, ya que sus opciones son diferentes a las del propietario del recurso.
Revertir opciones
Verdadero o falso
es una plantilla abierta. No genera puntuaciones para una tabla de clasificación.
Requiere iniciar sesión
Estilo visual
Fuentes
Se necesita una suscripción
Opciones
Cambiar plantilla
Mostrar todo
A medida que juegas a la actividad, aparecerán más formatos.
Resultados abiertos
Copiar enlace
Código QR
Eliminar
¿Restaurar actividad almacenada automáticamente:
?