Группа 1: Правда, Две прямые, перпендикулярны к третьей, не пересекаются., Треугольника со сторонами 1,2,4 не существует., Через заданную точку плоскости можно провести бесконечное количество прямых., Внешний угол треугольника равен сумме двух углов треугольника, не смежных с ним., Вертикальные углы равны., Сумма смежных углов равна 180° , Каждая из биссектрис равностороннего треугольника является его медианой., Если угол острый, то смежный с ним угол тупой., Группа 2: Ложь, Две прямые, перпендикулярные третьей прямой, перпендикулярны друг другу., Треугольника со сторонами 1,2,4 существует., Через заданную точку плоскости можно провести единственную прямую., Внешний угол треугольника равен сумме его внутренних углов., Смежные углы всегда равны., Каждая из биссектрис равнобедренного треугольника является его медианой., Если угол острый, то смежный с ним угол тоже острый.,
0%
Геометрия 7 класс
Compartir
Compartir
Compartir
por
Lotvindanil
Editar contenido...
Imprimir
Incrustar
Más
Tareas
Tabla de clasificación
Mostrar más
Mostrar menos
Esta tabla de clasificación es actualmente privada. Haz clic en
Compartir
para hacerla pública.
Esta tabla de clasificación ha sido desactivada por el propietario del recurso.
Esta tabla clasificación está desactivada, ya que sus opciones son diferentes a las del propietario del recurso.
Revertir opciones
Ordenar por grupo
es una plantilla abierta. No genera puntuaciones para una tabla de clasificación.
Requiere iniciar sesión
Estilo visual
Fuentes
Se necesita una suscripción
Opciones
Cambiar plantilla
Mostrar todo
A medida que juegas a la actividad, aparecerán más formatos.
Resultados abiertos
Copiar enlace
Código QR
Eliminar
¿Restaurar actividad almacenada automáticamente:
?