1) Identify the function type of f(x)=x3−4x2+7 a) Exponential b) Trigonometric c) Polynomial (cubic) d) Rational 2) Find the magnitude of the vector ⟨-6, 8⟩. a) √52 b) 14 c) 6 d) 10 3) For h(t) = -16t2 + 64t + 5, when does maximum height occur? a) t = 1 b) t = 2 c) t = 4 d) t = 8 4) Solve 2x = 16. a) 2 b) 4 c) 8 d) log 16 5) Convert (r, θ) = (5, π/3) to Cartesian coordinates. a) (5√3/2, 5/2) b) (5, π/3) c) (5/2, 5√3/2) d) (5√3, 5) 6) Write 4(cos π/6 + i sin π/6) in rectangular form. a) 2 + 2√3i b) 2√3 + 2i c) 4 + i d) √3 + i 7) What is sin(π/3)? a) 1 b) √3 c) √3/2 d) 1/2 8) Solve ln(x - 3) = 2. a) x = 5 b) x = 2e - 3 c) x = ln 5 d) x = e^2 + 3 9) Solve log₃x + log₃(x - 2) = 2. a) 6 b) 2 c) 9 d) 4 10) Solve e2x = 7. a) ln 14 b) ½ ln 7 c) ln 7 d) 3.5 11) Multiply (3 - 2i)(-7 - 5i). a) -31 + i b) -21 - 10i c) -31 - i d) 31 + i 12) Solve 2cos x = 1 for 0 ≤ x < 2π. a) π/6, 11π/6 b) 2π/3, 4π/3 c) π/3 only d) π/3, 5π/3 13) Convert 3 + 3i to polar form. a) 6(cos π/3 + i sin π/3) b) 3(cos π/6 + i sin π/6) c) √18(cos π/2 + i sin π/2) d) 3√2(cos π/4 + i sin π/4) 14) Solve the system: y = 2x + 1 and y = -x + 7 a) (1, 3) b) (2, 5) c) (3, 7) d) (-2, -3) 15) Given P(t) = 1200(1.03)t, find P(5). a) 1200 b) 1500 c) 1350 d) 1391 16) How many solutions does the system 3x - 2y = 6 and 6x - 4y = 12 have? a) No solution b) Exactly one solution c) Exactly two solutions d) Infinitely many solutions 17) What is the vertex of f(x) = |x + 2| - 3? a) (2, -3) b) (-3, -2) c) (-2, -3) d) (0, -3) 18) How is y=−2(x−3)2+1 transformed from y=x2? a) Shifted left 3 and up 1 b) Reflected over y-axis c) Reflected over x-axis, stretched by 2, right 3, up 1 d) Vertical stretch by 3 19) Which equation has a horizontal asymptote at y = 0? a) y = x - 3 b) y = ln x c) y = (1/2)^x d) y = x^2 20) Evaluate arcsin(sin(3π/7)). a) π - 3π/7 b) -3π/7 c) 3π/7 d) π/7 21) Convert the point (-3, 3√3) to polar form. a) (3, π/3) b) (6, π/6) c) (√12, π/4) d) (6, 2π/3) 22) What is the end behavior of f(x) = x3 - 4x2 + 7? a) As x→∞, f(x)→-∞ b) Both ends go down c) As x→∞, f(x)→∞ d) Both ends go up 23) Solve sin x = √3/2 for 0 ≤ x < 2π. a) π/6, 5π/6 b) 2π/3 only c) π/3, 2π/3 d) π/4, 3π/4 24) What is the amplitude of y = 3sin(x - π/4)? a) 2π b) 1 c) π/4 d) 3 25) Which equation represents a parabola opening downward with vertex at (0, 4)? a) y = x2 + 4 b) y = -4x2 c) y = x2 - 4 d) y = -x2 + 4
0%
Fun Math Game!
Jaa
Jaa
Jaa
tekijä
Oheckbert
Math
Precalculus
Muokkaa sisältöä
Tulosta
Upota
Lisää
Tehtäviä
Tulostaulu
Näytä enemmän
Näytä vähemmän
Tämä tulostaulu on tällä hetkellä yksityinen. Jos haluat tehdä siitä julkisen, valitse
Jaa
.
Tehtävän omistaja on poistanut tämän tulostaulun käytöstä.
Tämä tulostaulu on poistettu käytöstä, koska vaihtoehdot eroavat tehtävän omistajan vaihtoehtoista.
Palauta Optiot
Monivalinta
on avoin malli. Se ei luo tulostaululle pisteitä.
SIsäänkirjautuminen vaaditaan
Visuaalinen tyyli
Fontit
Tilaus vaaditaan
Vaihtoehdot
Vaihda mallia
Näytä kaikki
Saat lisää muotoiluasetuksia pelin aikana.
Avoimet tulokset
Kopioi linkki
QR-koodi
Poista
Säilytetäänkö automaattisesti tallennettu tehtävä
?