1) Find the roots for 3x^2 + 2x - 6 = 0 (addmaths) a) x = 1.1196, x = -1.7863 b) x = 1.3862, x = 1.0832 c) x = 1.87622, x = -1.86221 2) Find the roots for 5x^2 - 2x - 4 = 0 (addmaths) a) x = 1.2434, x = -0.6434 b) x = 8.8975, x = 3.6749 c) x = 1.5737, x = -1.8139 3) Find the roots for 7x^2 - 5x - 9 = 0 (addmaths) a) x = 9.6958, x = 7.4206 b) x = 3.0012, x = 0.1993 c) x = 1.5460, x = -0.8317 4) Find the roots for -3x^2 + 5x + 7 = 0 (addmaths) a) x = 2.5734, x = -0.9064 b) x = 2.6734, x = -0.1064 c) x = 9.2849, x =7.2563 5) Find the roots for x^2 - 3x = 5 (addmaths) a) x = 1.3563, x = 1.5365 b) x = 4.1926, x = -1.1926 c) x = 1.7354, x = 4.6751 6) Find the range of value k if the quadratic equation has two different and real roots. x^2 - 5x + 3 = k (addmaths) a) k > -13/4 b) k > -13/2 c) k > 13/4 7) Find the range of value k if the quadratic equation has two different and real roots. 2x^2 + 6x + 5 = k (addmaths) a) k > 2/3 b) k > 1/2 c) k > 27 8) Find the range of value k if the quadratic equation has two different and real roots. 3x^2 + 2x + k = 5 (addmaths) a) k < 16/3 b) k > -16/3 c) k > 16/3 9) Given a (alpha) and b (beta) are the roots of the quadratic equation x^2 - 7x + 14 = 0, form a new quadratic equation (addmaths) a) 9x^2 - 21x + 14 = 0 b) x^2 + 23x + 14 = 0 c) 3x^2 - 7x - 77 = 0 10) If 2 is the root of quadratic equation x^2 + 4kx - 12 = 0, find the value of k (addmaths) a) k = 1 b) k = 2 c) k = 3 11) given the quadratic function f(x) = -2x^2 + 6x + c, and the coordinate , P(3,-6). find the value of c (maths) a) c = -6 b) c = 6 c) c = 9 12) given the quadratic function f(x) = x^2 - 3x + c, and the coordinate , P(0,7). find the value of c (maths) a) c = 7 b) c = 6 c) c = 9 13) find the roots of the quadratic function, 2y(y - 1) = -5y + 2 (maths) a) y = 3, y = 4 b) y = 1, y = -2 c) y = -1, y = 2 14) turn the following equation into general form : 3m ( -4m + 9) = 39 (maths) a) 12m^2 + 9m + 39 = 0 b) 6m^2 = 8m + 69 = 0 c) -12m^2 + 27m - 39 = 0 15) turn the following equation into general form : x ( 3 + 11x ) = 24 (maths) a) x^2 + 3x - 24 = 0 b) 11x^2 + 3x = 0 c) 11x^2 + 3x - 24 = 0 16) determine whether the given value is a root or not. 2n^2 - 7n - 4 = 0; (n = 5) (maths) a) a root b) not a root 17) determine whether the given value is a root or not. x^2 - 12 = 0; (x = 4) (maths) a) a root b) not a root 18) turn the following equation into general form 6 - 3(4 - y)2 (maths) a) -3y^2 + 24y - 42 = 0 b) y^2 + 24y - 42 = 0 c) y^2 4y - 24 = 0 19) determine the roots of the following equation 1/[4x(8x + 32)] = -2(x + 6) (maths) a) x = -2, x = -3 b) x = 5, x = 6 c) x = 1, x = 6 20) write the following quadratic equations in general form. m ( m + 2 ) = 3 (maths) a) 2m^2 + m - 3 = 0 b) m^2 + 2m - 3 = 0 c) m^2 + m - 3 = 0
0%
PBL MATHS/ADDMATHS
Ортақ пайдалану
Ортақ пайдалану
Ортақ пайдалану
M8191227
бойынша
Men. atas
Math
Algebra
Persamaan dan ketaksamaan
Мазмұнды өңдеу
Басып шығару
Ендіру
Қосымша
Тағайындаулар
Көшбасшылар тақтасы
Қосымша көрсету
Азырайтып көрсету
Бұл көшбасшылар тақтасы қазір жеке. Оны жалпыға ортақ ету үшін
Бөлісу
түймесін басыңыз.
Бұл көшбасшылар тақтасын ресурс иесі өшірген.
Бұл көшбасшылар тақтасы өшірілген, себебі сіздің мүмкіндіктеріңіз мазмұн иесінің мүмкіндіктерінен өзгеше.
Параметрлерді қайтарыңыз
Лабиринт арқылы қуу
— ашық үлгі. Ол көшбасшылар тақтасы үшін ұпайлар тудырмайды.
Жүйеге кіру қажет
Визуалды стиль
Қаріптер
Жазылым қажет
Опциялар
Үлгіні ауыстыру
Барлығын көрсету
Әрекетті ойнаған сайын қосымша пішімдер пайда болады.
Нәтижелерді ашу
Сілтемені көшіру
QR коды
Өшіру
Өңдеуді жалғастыру:
?