Группа 1: Правда, Две прямые, перпендикулярны к третьей, не пересекаются., Треугольника со сторонами 1,2,4 не существует., Через заданную точку плоскости можно провести бесконечное количество прямых., Внешний угол треугольника равен сумме двух углов треугольника, не смежных с ним., Вертикальные углы равны., Сумма смежных углов равна 180° , Каждая из биссектрис равностороннего треугольника является его медианой., Если угол острый, то смежный с ним угол тупой., Группа 2: Ложь, Две прямые, перпендикулярные третьей прямой, перпендикулярны друг другу., Треугольника со сторонами 1,2,4 существует., Через заданную точку плоскости можно провести единственную прямую., Внешний угол треугольника равен сумме его внутренних углов., Смежные углы всегда равны., Каждая из биссектрис равнобедренного треугольника является его медианой., Если угол острый, то смежный с ним угол тоже острый.,
0%
Геометрия 7 класс
Udostępnij
Udostępnij
Udostępnij
autor:
Lotvindanil
Edytuj elementy
Drukuj
Osadź
Więcej
Zadania
Tabela rankingowa
Pokaż więcej
Pokaż mniej
Ta tabela rankingowa jest obecnie prywatna. Kliknij przycisk
Udostępnij
, aby ją upublicznić.
Ta tabela rankingowa została wyłączona przez właściciela materiału.
Ta tabela rankingowa została wyłączona, ponieważ Twoje opcje różnią się od opcji właściciela materiału.
Przywróć poprzednie opcje
Posortuj
jest szablonem otwartym. Nie generuje wyników w tabeli rankingowej.
Wymagane logowanie
Motyw
Czcionki
Wymagany abonament
Opcje
Zmień szablon
Pokaż wszystko
Więcej formatów pojawi się podczas wykonywania ćwiczenia.
Otwórz wyniki
Kopiuj link
Kod QR
Usuń
Przywrócić automatycznie zapisane ćwiczenie:
?