Группа 1: Правда, Две прямые, перпендикулярны к третьей, не пересекаются., Треугольника со сторонами 1,2,4 не существует., Через заданную точку плоскости можно провести бесконечное количество прямых., Внешний угол треугольника равен сумме двух углов треугольника, не смежных с ним., Вертикальные углы равны., Сумма смежных углов равна 180° , Каждая из биссектрис равностороннего треугольника является его медианой., Если угол острый, то смежный с ним угол тупой., Группа 2: Ложь, Две прямые, перпендикулярные третьей прямой, перпендикулярны друг другу., Треугольника со сторонами 1,2,4 существует., Через заданную точку плоскости можно провести единственную прямую., Внешний угол треугольника равен сумме его внутренних углов., Смежные углы всегда равны., Каждая из биссектрис равнобедренного треугольника является его медианой., Если угол острый, то смежный с ним угол тоже острый.,
0%
Геометрия 7 класс
Partajează
Partajează
Partajează
de
Lotvindanil
Editează conținutul
Imprimare
Încorporează
Mai multe
Misiuni
Clasament
Arată mai mult
Arată mai puțin
Acest clasament este în prezent privat. Fă clic pe
Distribuie
pentru a-l face public.
Acest clasament a fost dezactivat de proprietarul resursei.
Acest clasament este dezactivat, deoarece opțiunile tale sunt diferite de ale proprietarului resursei.
Opțiuni de revenire
Sortare în funcție de grup
este un șablon deschis. Nu generează scoruri pentru un clasament.
Este necesară conectarea
Stilul vizual
Fonturi
Este necesar un abonament
Opţiuni
Comutare șablon
Arată tot
Mai multe formate vor apărea pe măsură ce folosești activitatea.
Rezultate deschise
Copiați linkul
Cod QR
Şterge
Restaurare activitate salvată automat:
?