1) Identify the function type of f(x)=x3−4x2+7 a) Exponential b) Trigonometric c) Polynomial (cubic) d) Rational 2) Find the magnitude of the vector ⟨-6, 8⟩. a) √52 b) 14 c) 6 d) 10 3) For h(t) = -16t2 + 64t + 5, when does maximum height occur? a) t = 1 b) t = 2 c) t = 4 d) t = 8 4) Solve 2x = 16. a) 2 b) 4 c) 8 d) log 16 5) Convert (r, θ) = (5, π/3) to Cartesian coordinates. a) (5√3/2, 5/2) b) (5, π/3) c) (5/2, 5√3/2) d) (5√3, 5) 6) Write 4(cos π/6 + i sin π/6) in rectangular form. a) 2 + 2√3i b) 2√3 + 2i c) 4 + i d) √3 + i 7) What is sin(π/3)? a) 1 b) √3 c) √3/2 d) 1/2 8) Solve ln(x - 3) = 2. a) x = 5 b) x = 2e - 3 c) x = ln 5 d) x = e^2 + 3 9) Solve log₃x + log₃(x - 2) = 2. a) 6 b) 2 c) 9 d) 4 10) Solve e2x = 7. a) ln 14 b) ½ ln 7 c) ln 7 d) 3.5 11) Multiply (3 - 2i)(-7 - 5i). a) -31 + i b) -21 - 10i c) -31 - i d) 31 + i 12) Solve 2cos x = 1 for 0 ≤ x < 2π. a) π/6, 11π/6 b) 2π/3, 4π/3 c) π/3 only d) π/3, 5π/3 13) Convert 3 + 3i to polar form. a) 6(cos π/3 + i sin π/3) b) 3(cos π/6 + i sin π/6) c) √18(cos π/2 + i sin π/2) d) 3√2(cos π/4 + i sin π/4) 14) Solve the system: y = 2x + 1 and y = -x + 7 a) (1, 3) b) (2, 5) c) (3, 7) d) (-2, -3) 15) Given P(t) = 1200(1.03)t, find P(5). a) 1200 b) 1500 c) 1350 d) 1391 16) How many solutions does the system 3x - 2y = 6 and 6x - 4y = 12 have? a) No solution b) Exactly one solution c) Exactly two solutions d) Infinitely many solutions 17) What is the vertex of f(x) = |x + 2| - 3? a) (2, -3) b) (-3, -2) c) (-2, -3) d) (0, -3) 18) How is y=−2(x−3)2+1 transformed from y=x2? a) Shifted left 3 and up 1 b) Reflected over y-axis c) Reflected over x-axis, stretched by 2, right 3, up 1 d) Vertical stretch by 3 19) Which equation has a horizontal asymptote at y = 0? a) y = x - 3 b) y = ln x c) y = (1/2)^x d) y = x^2 20) Evaluate arcsin(sin(3π/7)). a) π - 3π/7 b) -3π/7 c) 3π/7 d) π/7 21) Convert the point (-3, 3√3) to polar form. a) (3, π/3) b) (6, π/6) c) (√12, π/4) d) (6, 2π/3) 22) What is the end behavior of f(x) = x3 - 4x2 + 7? a) As x→∞, f(x)→-∞ b) Both ends go down c) As x→∞, f(x)→∞ d) Both ends go up 23) Solve sin x = √3/2 for 0 ≤ x < 2π. a) π/6, 5π/6 b) 2π/3 only c) π/3, 2π/3 d) π/4, 3π/4 24) What is the amplitude of y = 3sin(x - π/4)? a) 2π b) 1 c) π/4 d) 3 25) Which equation represents a parabola opening downward with vertex at (0, 4)? a) y = x2 + 4 b) y = -4x2 c) y = x2 - 4 d) y = -x2 + 4
0%
Fun Math Game!
Dela
Dela
Dela
av
Oheckbert
Math
Redigera innehåll
Skriv ut
Bädda in
Mer
Uppdrag
Rankningslista
Visa mer
Visa mindre
Denna topplista är för närvarande privat. Klicka på
dela
för att göra den offentlig.
Denna topplista har inaktiverats av resursägaren.
Denna topplista är inaktiverad eftersom att alternativen är olika för resursägarna.
Återgå alternativ
Test
är en öppen mall. Det genererar inte noter för en poänglista.
Inloggning krävs
Visuell stil
Teckensnitt
Prenumeration krävs
Alternativ
Växla mall
Visa alla
Flera format visas när du spelar aktiviteten.
Öppna resultat
Kopiera länk
QR-kod
Ta bort
Återställ sparas automatiskt:
?