1) Find the roots for 3x^2 + 2x - 6 = 0 (addmaths) a) x = 1.1196, x = -1.7863 b) x = 1.3862, x = 1.0832 c) x = 1.87622, x = -1.86221 2) Find the roots for 5x^2 - 2x - 4 = 0 (addmaths) a) x = 1.2434, x = -0.6434 b) x = 8.8975, x = 3.6749 c) x = 1.5737, x = -1.8139 3) Find the roots for 7x^2 - 5x - 9 = 0 (addmaths) a) x = 9.6958, x = 7.4206 b) x = 3.0012, x = 0.1993 c) x = 1.5460, x = -0.8317 4) Find the roots for -3x^2 + 5x + 7 = 0 (addmaths) a) x = 2.5734, x = -0.9064 b) x = 2.6734, x = -0.1064 c) x = 9.2849, x =7.2563 5) Find the roots for x^2 - 3x = 5 (addmaths) a) x = 1.3563, x = 1.5365 b) x = 4.1926, x = -1.1926 c) x = 1.7354, x = 4.6751 6) Find the range of value k if the quadratic equation has two different and real roots. x^2 - 5x + 3 = k (addmaths) a) k > -13/4 b) k > -13/2 c) k > 13/4 7) Find the range of value k if the quadratic equation has two different and real roots. 2x^2 + 6x + 5 = k (addmaths) a) k > 2/3 b) k > 1/2 c) k > 27 8) Find the range of value k if the quadratic equation has two different and real roots. 3x^2 + 2x + k = 5 (addmaths) a) k < 16/3 b) k > -16/3 c) k > 16/3 9) Given a (alpha) and b (beta) are the roots of the quadratic equation x^2 - 7x + 14 = 0, form a new quadratic equation (addmaths) a) 9x^2 - 21x + 14 = 0 b) x^2 + 23x + 14 = 0 c) 3x^2 - 7x - 77 = 0 10) If 2 is the root of quadratic equation x^2 + 4kx - 12 = 0, find the value of k (addmaths) a) k = 1 b) k = 2 c) k = 3 11) given the quadratic function f(x) = -2x^2 + 6x + c, and the coordinate , P(3,-6). find the value of c (maths) a) c = -6 b) c = 6 c) c = 9 12) given the quadratic function f(x) = x^2 - 3x + c, and the coordinate , P(0,7). find the value of c (maths) a) c = 7 b) c = 6 c) c = 9 13) find the roots of the quadratic function, 2y(y - 1) = -5y + 2 (maths) a) y = 3, y = 4 b) y = 1, y = -2 c) y = -1, y = 2 14) turn the following equation into general form : 3m ( -4m + 9) = 39 (maths) a) 12m^2 + 9m + 39 = 0 b) 6m^2 = 8m + 69 = 0 c) -12m^2 + 27m - 39 = 0 15) turn the following equation into general form : x ( 3 + 11x ) = 24 (maths) a) x^2 + 3x - 24 = 0 b) 11x^2 + 3x = 0 c) 11x^2 + 3x - 24 = 0 16) determine whether the given value is a root or not. 2n^2 - 7n - 4 = 0; (n = 5) (maths) a) a root b) not a root 17) determine whether the given value is a root or not. x^2 - 12 = 0; (x = 4) (maths) a) a root b) not a root 18) turn the following equation into general form 6 - 3(4 - y)2 (maths) a) -3y^2 + 24y - 42 = 0 b) y^2 + 24y - 42 = 0 c) y^2 4y - 24 = 0 19) determine the roots of the following equation 1/[4x(8x + 32)] = -2(x + 6) (maths) a) x = -2, x = -3 b) x = 5, x = 6 c) x = 1, x = 6 20) write the following quadratic equations in general form. m ( m + 2 ) = 3 (maths) a) 2m^2 + m - 3 = 0 b) m^2 + 2m - 3 = 0 c) m^2 + m - 3 = 0
0%
PBL MATHS/ADDMATHS
Ibahagi
Ibahagi
Ibahagi
ni
M8191227
Men. atas
Math
Algebra
Persamaan dan ketaksamaan
I-edit ang Nilalaman
I-print
Naka-embed
Higit pa
Mga Assignment
Leaderboard
Magpakita pa
Huwag gaanong magpakita
Ang leaderboard na ito ay kasalukuyang pribado. I-click ang
ibahagi
upang gawin itong pampubliko.
Ang leaderboard na ito ay hindi pinagana ng may-ari ng aktibidad.
Hindi pinagana ang leaderboard na ito dahil ang iyong mga pagpipilian ay naiiba sa may-ari ng aktibidad..
Ibalik ang Opsyon
Maze chase
ay isang bukas na template. Hindi ito bumubuo ng mga marka para sa isang leaderboard.
Kailangan maglog-in
Estilo ng visual
Mga Font
Kailangan ang subscription
Mga pagpipilian
Magpalit ng template
Ipakita lahat
Mas marami pang format ang lilitaw habang nilalaro ang aktibidad.
Buksan ang mga resulta
Kopyahin ang link
QR code
Tanggalin
Ibalik ng awtomatikong pag-save:
?