Истина: Прямая и плоскость называются параллельными, если они не имеют общих точек, Если прямая, не лежащая в плоскости, параллельная какой-либо прямой плоскости, то она параллельна этой плоскости, Линия пересечения плоскостей, одна из которых проходит через прямую, параллельную другой плоскости, параллельна этой прямой, MN∥AC, MN∥β, Если AD⊂β, то BC∥β, Ложь: Прямая и плоскость могут быть пересекающимися, параллельными и скрещивающимися, Если прямая, не лежащая в плоскости, параллельная каждой прямой плоскости, то она параллельна этой плоскости, Линия пересечения плоскостей, одна из которых проходит через прямую, перпендикулярную другой плоскости, параллельна этой прямой, MN∩β, BC=AD, поэтому BC∥β,
0%
Параллельность прямой и плоскости_тест
Paylaş
Paylaş
Paylaş
4xanna
tarafından
10 класс
Математика
İçeriği Düzenle
Yazdır
Yerleştir
Daha fazla
Ödevler
Skor Tablosu
Daha fazla göster
Daha az göster
Bu lider panosu şu anda gizlidir. Herkese açmak için
Paylaş
'a tıklayın.
Bu lider panosu kaynak sahibi tarafından devre dışı bırakıldı.
Seçenekleriniz kaynak sahibinden farklı olduğu için bu lider panosu devre dışı bırakıldı.
Seçenekleri Eski Haline Döndür
Doğru veya yanlış
açık uçlu bir şablondur. Bir lider panosu için skor oluşturmaz.
Giriş gereklidir
Görsel stil
Yazı tipleri
Abonelik gerekli
Seçenekler
Şablonu değiştir
Tümünü göster
Siz etkinliği oynarken daha fazla format görüntülenir.
Sonuçları aç
Bağlantıyı kopyala
QR kodu
Sil
Otomatik olarak kaydedilen geri yüklensin mi:
?