1) Find the roots for 3x^2 + 2x - 6 = 0 (addmaths) a) x = 1.1196, x = -1.7863 b) x = 1.3862, x = 1.0832 c) x = 1.87622, x = -1.86221 2) Find the roots for 5x^2 - 2x - 4 = 0 (addmaths) a) x = 1.2434, x = -0.6434 b) x = 8.8975, x = 3.6749 c) x = 1.5737, x = -1.8139 3) Find the roots for 7x^2 - 5x - 9 = 0 (addmaths) a) x = 9.6958, x = 7.4206 b) x = 3.0012, x = 0.1993 c) x = 1.5460, x = -0.8317 4) Find the roots for -3x^2 + 5x + 7 = 0 (addmaths) a) x = 2.5734, x = -0.9064 b) x = 2.6734, x = -0.1064 c) x = 9.2849, x =7.2563 5) Find the roots for x^2 - 3x = 5 (addmaths) a) x = 1.3563, x = 1.5365 b) x = 4.1926, x = -1.1926 c) x = 1.7354, x = 4.6751 6) Find the range of value k if the quadratic equation has two different and real roots. x^2 - 5x + 3 = k (addmaths) a) k > -13/4 b) k > -13/2 c) k > 13/4 7) Find the range of value k if the quadratic equation has two different and real roots. 2x^2 + 6x + 5 = k (addmaths) a) k > 2/3 b) k > 1/2 c) k > 27 8) Find the range of value k if the quadratic equation has two different and real roots. 3x^2 + 2x + k = 5 (addmaths) a) k < 16/3 b) k > -16/3 c) k > 16/3 9) Given a (alpha) and b (beta) are the roots of the quadratic equation x^2 - 7x + 14 = 0, form a new quadratic equation (addmaths) a) 9x^2 - 21x + 14 = 0 b) x^2 + 23x + 14 = 0 c) 3x^2 - 7x - 77 = 0 10) If 2 is the root of quadratic equation x^2 + 4kx - 12 = 0, find the value of k (addmaths) a) k = 1 b) k = 2 c) k = 3 11) given the quadratic function f(x) = -2x^2 + 6x + c, and the coordinate , P(3,-6). find the value of c (maths) a) c = -6 b) c = 6 c) c = 9 12) given the quadratic function f(x) = x^2 - 3x + c, and the coordinate , P(0,7). find the value of c (maths) a) c = 7 b) c = 6 c) c = 9 13) find the roots of the quadratic function, 2y(y - 1) = -5y + 2 (maths) a) y = 3, y = 4 b) y = 1, y = -2 c) y = -1, y = 2 14) turn the following equation into general form : 3m ( -4m + 9) = 39 (maths) a) 12m^2  + 9m + 39 = 0 b) 6m^2 = 8m + 69 = 0 c) -12m^2 + 27m - 39 = 0 15) turn the following equation into general form : x ( 3 + 11x ) = 24 (maths) a) x^2 + 3x - 24 = 0 b) 11x^2 + 3x  = 0 c) 11x^2 + 3x - 24 = 0 16) determine whether the given value is a root or not. 2n^2 - 7n - 4 = 0; (n = 5) (maths) a) a root b) not a root 17) determine whether the given value is a root or not. x^2 - 12 = 0; (x = 4) (maths) a) a root b) not a root 18) turn the following equation into general form 6 - 3(4 - y)2 (maths) a) -3y^2 + 24y - 42 = 0 b) y^2 + 24y - 42 = 0 c) y^2 4y - 24 = 0 19) determine the roots of the following equation 1/[4x(8x + 32)] = -2(x + 6) (maths) a) x = -2, x = -3 b) x = 5, x = 6 c) x = 1, x = 6 20) write the following quadratic equations in general form. m ( m + 2 ) = 3 (maths) a) 2m^2 + m - 3 = 0 b) m^2 + 2m - 3 = 0 c) m^2 + m - 3 = 0

Список переможців

Візуальний стиль

Параметри

Обрати інший шаблон

Відновити автоматично збережене: ?