1) Find the roots for 3x^2 + 2x - 6 = 0 (addmaths) a) x = 1.1196, x = -1.7863 b) x = 1.3862, x = 1.0832 c) x = 1.87622, x = -1.86221 2) Find the roots for 5x^2 - 2x - 4 = 0 (addmaths) a) x = 1.2434, x = -0.6434 b) x = 8.8975, x = 3.6749 c) x = 1.5737, x = -1.8139 3) Find the roots for 7x^2 - 5x - 9 = 0 (addmaths) a) x = 9.6958, x = 7.4206 b) x = 3.0012, x = 0.1993 c) x = 1.5460, x = -0.8317 4) Find the roots for -3x^2 + 5x + 7 = 0 (addmaths) a) x = 2.5734, x = -0.9064 b) x = 2.6734, x = -0.1064 c) x = 9.2849, x =7.2563 5) Find the roots for x^2 - 3x = 5 (addmaths) a) x = 1.3563, x = 1.5365 b) x = 4.1926, x = -1.1926 c) x = 1.7354, x = 4.6751 6) Find the range of value k if the quadratic equation has two different and real roots. x^2 - 5x + 3 = k (addmaths) a) k > -13/4 b) k > -13/2 c) k > 13/4 7) Find the range of value k if the quadratic equation has two different and real roots. 2x^2 + 6x + 5 = k (addmaths) a) k > 2/3 b) k > 1/2 c) k > 27 8) Find the range of value k if the quadratic equation has two different and real roots. 3x^2 + 2x + k = 5 (addmaths) a) k < 16/3 b) k > -16/3 c) k > 16/3 9) Given a (alpha) and b (beta) are the roots of the quadratic equation x^2 - 7x + 14 = 0, form a new quadratic equation (addmaths) a) 9x^2 - 21x + 14 = 0 b) x^2 + 23x + 14 = 0 c) 3x^2 - 7x - 77 = 0 10) If 2 is the root of quadratic equation x^2 + 4kx - 12 = 0, find the value of k (addmaths) a) k = 1 b) k = 2 c) k = 3 11) given the quadratic function f(x) = -2x^2 + 6x + c, and the coordinate , P(3,-6). find the value of c (maths) a) c = -6 b) c = 6 c) c = 9 12) given the quadratic function f(x) = x^2 - 3x + c, and the coordinate , P(0,7). find the value of c (maths) a) c = 7 b) c = 6 c) c = 9 13) find the roots of the quadratic function, 2y(y - 1) = -5y + 2 (maths) a) y = 3, y = 4 b) y = 1, y = -2 c) y = -1, y = 2 14) turn the following equation into general form : 3m ( -4m + 9) = 39 (maths) a) 12m^2 + 9m + 39 = 0 b) 6m^2 = 8m + 69 = 0 c) -12m^2 + 27m - 39 = 0 15) turn the following equation into general form : x ( 3 + 11x ) = 24 (maths) a) x^2 + 3x - 24 = 0 b) 11x^2 + 3x = 0 c) 11x^2 + 3x - 24 = 0 16) determine whether the given value is a root or not. 2n^2 - 7n - 4 = 0; (n = 5) (maths) a) a root b) not a root 17) determine whether the given value is a root or not. x^2 - 12 = 0; (x = 4) (maths) a) a root b) not a root 18) turn the following equation into general form 6 - 3(4 - y)2 (maths) a) -3y^2 + 24y - 42 = 0 b) y^2 + 24y - 42 = 0 c) y^2 4y - 24 = 0 19) determine the roots of the following equation 1/[4x(8x + 32)] = -2(x + 6) (maths) a) x = -2, x = -3 b) x = 5, x = 6 c) x = 1, x = 6 20) write the following quadratic equations in general form. m ( m + 2 ) = 3 (maths) a) 2m^2 + m - 3 = 0 b) m^2 + 2m - 3 = 0 c) m^2 + m - 3 = 0
0%
PBL MATHS/ADDMATHS
Bendrinti
Bendrinti
Bendrinti
prie
M8191227
Men. atas
Math
Algebra
Persamaan dan ketaksamaan
Redaguoti turinį
Spausdinti
Įterpti
Daugiau
Užduotis
Lyderių lentelė
Rodyti daugiau
Rodyti mažiau
Ši lyderių lentelė šiuo metu yra privati. Spustelėkite
Bendrinti
, kad ji būtų vieša.
Ši lyderių lentelė buvo išjungta išteklių savininko.
Ši lyderių lentelė yra išjungta, nes jūsų parinktys skiriasi nuo nustatytų išteklių savininko.
Grąžinti parinktis
Labirintas
yra neterminuotas šablonas. Jis negeneruoja rezultatų lyedrių lentelei.
Reikia prisijungti
Vizualinis stilius
Šriftai
Būtina prenumerata
Parinktys
Pakeisti šabloną
Rodyti viską
Pradėjus veiklą bus rodoma daugiau formatų.
Atviri rezultatai
Kopijuoti nuorodą
QR kodas
Naikinti
Atkurti automatiškai įrašytą:
?