1) Find the maximal directional derivatives of x^3y^2z at (1,-2,3) a) 4⎷91 b) 50 c) 88.8 2) Find the curl of yzi + 3xzj +zk at (2,3,4) a) 0.5i + 7j + 55k b) 10i + 5j + 10k c) -6i + 3j + 8k 3) Find ∇·A̅ given A̅= 1/r (xi + yj +zk) where r = √x^2 + y^2 + z^2 a) 5/r b) 2/r c) 1 4) Find the value of constant b such that A̅= (bxy − z^3)i + (b-2)x^2j + (1-b)xz^2k has its curl identically equal to zero a) 1 b) 4 c) 17 5) Determine the directional derivatives of f=xy^2 +yz^3 at the point (2,-1,1) in the direction of the vector i+2J+2k a) 11/3 b) 12/3 c) 13/3

Leaderboard

Visual style

Options

Switch template

Continue editing: ?