1) Transform the given equation of an ellipse into standard form. a) (x+7)2/64 + (y-2)2/36 = 1 b) (x+2)2/36 + (y-7)2/64= 1 c) (x-7)2/64 + (y+2)2/36 = 1 d) (x-2)2/36 + (y+7)2/64= 1 2) Give the orientation of the ellipse with the given equation. a) Horizontal b) Vertical c) Diagonal 3) Give the value of a, b, and c of the ellipse with the given equation. a) a=6, b=8, c=7√2 b) a=8, b=6, c=2√7 c) a=7, b=2, c=6√8 d) a=2, b=7, c=8√6 4) Give the coordinates of the center and foci of the ellipse with the given equation. a) C=(-7,2) F1=(-12.3,2) F2=(-1.7,2) b) C=(-7,-2) F1=(-12.3,-2) F2=(-1.7,-2) c) C=(7,2) F1=(12.3,2) F2=(1.7,2) d) C=(7,-2) F1=(12.3,-2) F2=(1.7,-2) 5) Give the coordinates of the vertices and covertices of the ellipse with the given equation. a) V1=(15,-2) V2=(-1,-2) CV1=(7,4) CV2=(7,-8) b) V1=(15,2) V2=(1,2) CV1=(-7,4) CV2=(-7,-8) c) V1=(-15,-2) V2=(-1,2) CV1=(-7,-4) CV2=(-7,8) d) V1=(-15,2) V2=(1,-2) CV1=(7,-4) CV2=(7,8)

Leaderboard

Visual style

Options

Switch template

Continue editing: ?